Copied to
clipboard

G = C32×C4⋊Dic3order 432 = 24·33

Direct product of C32 and C4⋊Dic3

direct product, metabelian, supersoluble, monomial

Aliases: C32×C4⋊Dic3, C62.164D6, (C3×C12)⋊8C12, C121(C3×C12), C6.8(C6×C12), C4⋊(C32×Dic3), C3317(C4⋊C4), (C6×C12).37C6, (C6×C12).57S3, (C32×C12)⋊6C4, C123(C3×Dic3), C6.40(C3×D12), (C3×C6).87D12, C6.4(D4×C32), (C3×C12)⋊11Dic3, C6.2(Q8×C32), (C2×C6).16C62, C62.61(C2×C6), (C6×Dic3).7C6, C6.18(C3×Dic6), C6.38(C6×Dic3), (C3×C6).33Dic6, (C32×C6).55D4, C2.1(C32×D12), (C32×C6).11Q8, C2.2(C32×Dic6), (C3×C62).43C22, (C3×C6×C12).9C2, C32(C32×C4⋊C4), C22.5(S3×C3×C6), C2.4(Dic3×C3×C6), C3210(C3×C4⋊C4), (C2×C12).8(C3×C6), (C2×C6).91(S3×C6), (C3×C6).47(C3×D4), (C3×C6).13(C3×Q8), (Dic3×C3×C6).6C2, (C2×C12).46(C3×S3), (C3×C6).59(C2×C12), (C2×C4).3(S3×C32), (C32×C6).66(C2×C4), (C2×Dic3).2(C3×C6), (C3×C6).79(C2×Dic3), SmallGroup(432,473)

Series: Derived Chief Lower central Upper central

C1C6 — C32×C4⋊Dic3
C1C3C6C2×C6C62C3×C62Dic3×C3×C6 — C32×C4⋊Dic3
C3C6 — C32×C4⋊Dic3
C1C62C6×C12

Generators and relations for C32×C4⋊Dic3
 G = < a,b,c,d,e | a3=b3=c4=d6=1, e2=d3, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >

Subgroups: 392 in 220 conjugacy classes, 114 normal (26 characteristic)
C1, C2, C3, C3, C3, C4, C4, C22, C6, C6, C6, C2×C4, C2×C4, C32, C32, C32, Dic3, C12, C12, C2×C6, C2×C6, C2×C6, C4⋊C4, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×C12, C2×C12, C2×C12, C33, C3×Dic3, C3×C12, C3×C12, C62, C62, C62, C4⋊Dic3, C3×C4⋊C4, C32×C6, C6×Dic3, C6×C12, C6×C12, C6×C12, C32×Dic3, C32×C12, C3×C62, C3×C4⋊Dic3, C32×C4⋊C4, Dic3×C3×C6, C3×C6×C12, C32×C4⋊Dic3
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D4, Q8, C32, Dic3, C12, D6, C2×C6, C4⋊C4, C3×S3, C3×C6, Dic6, D12, C2×Dic3, C2×C12, C3×D4, C3×Q8, C3×Dic3, C3×C12, S3×C6, C62, C4⋊Dic3, C3×C4⋊C4, S3×C32, C3×Dic6, C3×D12, C6×Dic3, C6×C12, D4×C32, Q8×C32, C32×Dic3, S3×C3×C6, C3×C4⋊Dic3, C32×C4⋊C4, C32×Dic6, C32×D12, Dic3×C3×C6, C32×C4⋊Dic3

Smallest permutation representation of C32×C4⋊Dic3
On 144 points
Generators in S144
(1 36 24)(2 31 19)(3 32 20)(4 33 21)(5 34 22)(6 35 23)(7 136 124)(8 137 125)(9 138 126)(10 133 121)(11 134 122)(12 135 123)(13 37 25)(14 38 26)(15 39 27)(16 40 28)(17 41 29)(18 42 30)(43 67 55)(44 68 56)(45 69 57)(46 70 58)(47 71 59)(48 72 60)(49 74 61)(50 75 62)(51 76 63)(52 77 64)(53 78 65)(54 73 66)(79 103 91)(80 104 92)(81 105 93)(82 106 94)(83 107 95)(84 108 96)(85 109 97)(86 110 98)(87 111 99)(88 112 100)(89 113 101)(90 114 102)(115 139 127)(116 140 128)(117 141 129)(118 142 130)(119 143 131)(120 144 132)
(1 5 3)(2 6 4)(7 9 11)(8 10 12)(13 17 15)(14 18 16)(19 23 21)(20 24 22)(25 29 27)(26 30 28)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 47 45)(44 48 46)(49 53 51)(50 54 52)(55 59 57)(56 60 58)(61 65 63)(62 66 64)(67 71 69)(68 72 70)(73 77 75)(74 78 76)(79 81 83)(80 82 84)(85 87 89)(86 88 90)(91 93 95)(92 94 96)(97 99 101)(98 100 102)(103 105 107)(104 106 108)(109 111 113)(110 112 114)(115 117 119)(116 118 120)(121 123 125)(122 124 126)(127 129 131)(128 130 132)(133 135 137)(134 136 138)(139 141 143)(140 142 144)
(1 53 17 48)(2 54 18 43)(3 49 13 44)(4 50 14 45)(5 51 15 46)(6 52 16 47)(7 108 144 112)(8 103 139 113)(9 104 140 114)(10 105 141 109)(11 106 142 110)(12 107 143 111)(19 66 30 55)(20 61 25 56)(21 62 26 57)(22 63 27 58)(23 64 28 59)(24 65 29 60)(31 73 42 67)(32 74 37 68)(33 75 38 69)(34 76 39 70)(35 77 40 71)(36 78 41 72)(79 115 89 125)(80 116 90 126)(81 117 85 121)(82 118 86 122)(83 119 87 123)(84 120 88 124)(91 127 101 137)(92 128 102 138)(93 129 97 133)(94 130 98 134)(95 131 99 135)(96 132 100 136)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 81 4 84)(2 80 5 83)(3 79 6 82)(7 78 10 75)(8 77 11 74)(9 76 12 73)(13 89 16 86)(14 88 17 85)(15 87 18 90)(19 92 22 95)(20 91 23 94)(21 96 24 93)(25 101 28 98)(26 100 29 97)(27 99 30 102)(31 104 34 107)(32 103 35 106)(33 108 36 105)(37 113 40 110)(38 112 41 109)(39 111 42 114)(43 116 46 119)(44 115 47 118)(45 120 48 117)(49 125 52 122)(50 124 53 121)(51 123 54 126)(55 128 58 131)(56 127 59 130)(57 132 60 129)(61 137 64 134)(62 136 65 133)(63 135 66 138)(67 140 70 143)(68 139 71 142)(69 144 72 141)

G:=sub<Sym(144)| (1,36,24)(2,31,19)(3,32,20)(4,33,21)(5,34,22)(6,35,23)(7,136,124)(8,137,125)(9,138,126)(10,133,121)(11,134,122)(12,135,123)(13,37,25)(14,38,26)(15,39,27)(16,40,28)(17,41,29)(18,42,30)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60)(49,74,61)(50,75,62)(51,76,63)(52,77,64)(53,78,65)(54,73,66)(79,103,91)(80,104,92)(81,105,93)(82,106,94)(83,107,95)(84,108,96)(85,109,97)(86,110,98)(87,111,99)(88,112,100)(89,113,101)(90,114,102)(115,139,127)(116,140,128)(117,141,129)(118,142,130)(119,143,131)(120,144,132), (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46)(49,53,51)(50,54,52)(55,59,57)(56,60,58)(61,65,63)(62,66,64)(67,71,69)(68,72,70)(73,77,75)(74,78,76)(79,81,83)(80,82,84)(85,87,89)(86,88,90)(91,93,95)(92,94,96)(97,99,101)(98,100,102)(103,105,107)(104,106,108)(109,111,113)(110,112,114)(115,117,119)(116,118,120)(121,123,125)(122,124,126)(127,129,131)(128,130,132)(133,135,137)(134,136,138)(139,141,143)(140,142,144), (1,53,17,48)(2,54,18,43)(3,49,13,44)(4,50,14,45)(5,51,15,46)(6,52,16,47)(7,108,144,112)(8,103,139,113)(9,104,140,114)(10,105,141,109)(11,106,142,110)(12,107,143,111)(19,66,30,55)(20,61,25,56)(21,62,26,57)(22,63,27,58)(23,64,28,59)(24,65,29,60)(31,73,42,67)(32,74,37,68)(33,75,38,69)(34,76,39,70)(35,77,40,71)(36,78,41,72)(79,115,89,125)(80,116,90,126)(81,117,85,121)(82,118,86,122)(83,119,87,123)(84,120,88,124)(91,127,101,137)(92,128,102,138)(93,129,97,133)(94,130,98,134)(95,131,99,135)(96,132,100,136), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,81,4,84)(2,80,5,83)(3,79,6,82)(7,78,10,75)(8,77,11,74)(9,76,12,73)(13,89,16,86)(14,88,17,85)(15,87,18,90)(19,92,22,95)(20,91,23,94)(21,96,24,93)(25,101,28,98)(26,100,29,97)(27,99,30,102)(31,104,34,107)(32,103,35,106)(33,108,36,105)(37,113,40,110)(38,112,41,109)(39,111,42,114)(43,116,46,119)(44,115,47,118)(45,120,48,117)(49,125,52,122)(50,124,53,121)(51,123,54,126)(55,128,58,131)(56,127,59,130)(57,132,60,129)(61,137,64,134)(62,136,65,133)(63,135,66,138)(67,140,70,143)(68,139,71,142)(69,144,72,141)>;

G:=Group( (1,36,24)(2,31,19)(3,32,20)(4,33,21)(5,34,22)(6,35,23)(7,136,124)(8,137,125)(9,138,126)(10,133,121)(11,134,122)(12,135,123)(13,37,25)(14,38,26)(15,39,27)(16,40,28)(17,41,29)(18,42,30)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60)(49,74,61)(50,75,62)(51,76,63)(52,77,64)(53,78,65)(54,73,66)(79,103,91)(80,104,92)(81,105,93)(82,106,94)(83,107,95)(84,108,96)(85,109,97)(86,110,98)(87,111,99)(88,112,100)(89,113,101)(90,114,102)(115,139,127)(116,140,128)(117,141,129)(118,142,130)(119,143,131)(120,144,132), (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46)(49,53,51)(50,54,52)(55,59,57)(56,60,58)(61,65,63)(62,66,64)(67,71,69)(68,72,70)(73,77,75)(74,78,76)(79,81,83)(80,82,84)(85,87,89)(86,88,90)(91,93,95)(92,94,96)(97,99,101)(98,100,102)(103,105,107)(104,106,108)(109,111,113)(110,112,114)(115,117,119)(116,118,120)(121,123,125)(122,124,126)(127,129,131)(128,130,132)(133,135,137)(134,136,138)(139,141,143)(140,142,144), (1,53,17,48)(2,54,18,43)(3,49,13,44)(4,50,14,45)(5,51,15,46)(6,52,16,47)(7,108,144,112)(8,103,139,113)(9,104,140,114)(10,105,141,109)(11,106,142,110)(12,107,143,111)(19,66,30,55)(20,61,25,56)(21,62,26,57)(22,63,27,58)(23,64,28,59)(24,65,29,60)(31,73,42,67)(32,74,37,68)(33,75,38,69)(34,76,39,70)(35,77,40,71)(36,78,41,72)(79,115,89,125)(80,116,90,126)(81,117,85,121)(82,118,86,122)(83,119,87,123)(84,120,88,124)(91,127,101,137)(92,128,102,138)(93,129,97,133)(94,130,98,134)(95,131,99,135)(96,132,100,136), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,81,4,84)(2,80,5,83)(3,79,6,82)(7,78,10,75)(8,77,11,74)(9,76,12,73)(13,89,16,86)(14,88,17,85)(15,87,18,90)(19,92,22,95)(20,91,23,94)(21,96,24,93)(25,101,28,98)(26,100,29,97)(27,99,30,102)(31,104,34,107)(32,103,35,106)(33,108,36,105)(37,113,40,110)(38,112,41,109)(39,111,42,114)(43,116,46,119)(44,115,47,118)(45,120,48,117)(49,125,52,122)(50,124,53,121)(51,123,54,126)(55,128,58,131)(56,127,59,130)(57,132,60,129)(61,137,64,134)(62,136,65,133)(63,135,66,138)(67,140,70,143)(68,139,71,142)(69,144,72,141) );

G=PermutationGroup([[(1,36,24),(2,31,19),(3,32,20),(4,33,21),(5,34,22),(6,35,23),(7,136,124),(8,137,125),(9,138,126),(10,133,121),(11,134,122),(12,135,123),(13,37,25),(14,38,26),(15,39,27),(16,40,28),(17,41,29),(18,42,30),(43,67,55),(44,68,56),(45,69,57),(46,70,58),(47,71,59),(48,72,60),(49,74,61),(50,75,62),(51,76,63),(52,77,64),(53,78,65),(54,73,66),(79,103,91),(80,104,92),(81,105,93),(82,106,94),(83,107,95),(84,108,96),(85,109,97),(86,110,98),(87,111,99),(88,112,100),(89,113,101),(90,114,102),(115,139,127),(116,140,128),(117,141,129),(118,142,130),(119,143,131),(120,144,132)], [(1,5,3),(2,6,4),(7,9,11),(8,10,12),(13,17,15),(14,18,16),(19,23,21),(20,24,22),(25,29,27),(26,30,28),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,47,45),(44,48,46),(49,53,51),(50,54,52),(55,59,57),(56,60,58),(61,65,63),(62,66,64),(67,71,69),(68,72,70),(73,77,75),(74,78,76),(79,81,83),(80,82,84),(85,87,89),(86,88,90),(91,93,95),(92,94,96),(97,99,101),(98,100,102),(103,105,107),(104,106,108),(109,111,113),(110,112,114),(115,117,119),(116,118,120),(121,123,125),(122,124,126),(127,129,131),(128,130,132),(133,135,137),(134,136,138),(139,141,143),(140,142,144)], [(1,53,17,48),(2,54,18,43),(3,49,13,44),(4,50,14,45),(5,51,15,46),(6,52,16,47),(7,108,144,112),(8,103,139,113),(9,104,140,114),(10,105,141,109),(11,106,142,110),(12,107,143,111),(19,66,30,55),(20,61,25,56),(21,62,26,57),(22,63,27,58),(23,64,28,59),(24,65,29,60),(31,73,42,67),(32,74,37,68),(33,75,38,69),(34,76,39,70),(35,77,40,71),(36,78,41,72),(79,115,89,125),(80,116,90,126),(81,117,85,121),(82,118,86,122),(83,119,87,123),(84,120,88,124),(91,127,101,137),(92,128,102,138),(93,129,97,133),(94,130,98,134),(95,131,99,135),(96,132,100,136)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,81,4,84),(2,80,5,83),(3,79,6,82),(7,78,10,75),(8,77,11,74),(9,76,12,73),(13,89,16,86),(14,88,17,85),(15,87,18,90),(19,92,22,95),(20,91,23,94),(21,96,24,93),(25,101,28,98),(26,100,29,97),(27,99,30,102),(31,104,34,107),(32,103,35,106),(33,108,36,105),(37,113,40,110),(38,112,41,109),(39,111,42,114),(43,116,46,119),(44,115,47,118),(45,120,48,117),(49,125,52,122),(50,124,53,121),(51,123,54,126),(55,128,58,131),(56,127,59,130),(57,132,60,129),(61,137,64,134),(62,136,65,133),(63,135,66,138),(67,140,70,143),(68,139,71,142),(69,144,72,141)]])

162 conjugacy classes

class 1 2A2B2C3A···3H3I···3Q4A4B4C4D4E4F6A···6X6Y···6AY12A···12AZ12BA···12CF
order12223···33···34444446···66···612···1212···12
size11111···12···22266661···12···22···26···6

162 irreducible representations

dim1111111122222222222222
type+++++--+-+
imageC1C2C2C3C4C6C6C12S3D4Q8Dic3D6C3×S3Dic6D12C3×D4C3×Q8C3×Dic3S3×C6C3×Dic6C3×D12
kernelC32×C4⋊Dic3Dic3×C3×C6C3×C6×C12C3×C4⋊Dic3C32×C12C6×Dic3C6×C12C3×C12C6×C12C32×C6C32×C6C3×C12C62C2×C12C3×C6C3×C6C3×C6C3×C6C12C2×C6C6C6
# reps121841683211121822881681616

Matrix representation of C32×C4⋊Dic3 in GL4(𝔽13) generated by

1000
0900
0010
0001
,
3000
0900
0090
0009
,
1000
01200
0080
00125
,
12000
0100
0090
00113
,
5000
01200
0052
0018
G:=sub<GL(4,GF(13))| [1,0,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[3,0,0,0,0,9,0,0,0,0,9,0,0,0,0,9],[1,0,0,0,0,12,0,0,0,0,8,12,0,0,0,5],[12,0,0,0,0,1,0,0,0,0,9,11,0,0,0,3],[5,0,0,0,0,12,0,0,0,0,5,1,0,0,2,8] >;

C32×C4⋊Dic3 in GAP, Magma, Sage, TeX

C_3^2\times C_4\rtimes {\rm Dic}_3
% in TeX

G:=Group("C3^2xC4:Dic3");
// GroupNames label

G:=SmallGroup(432,473);
// by ID

G=gap.SmallGroup(432,473);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,-2,-3,252,1037,512,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^4=d^6=1,e^2=d^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽